The Minkowski Theorem for Max-plus Convex Sets

نویسنده

  • STÉPHANE GAUBERT
چکیده

We establish the following max-plus analogue of Minkowski’s theorem. Any point of a compact max-plus convex subset of (R∪{−∞})n can be written as the max-plus convex combination of at most n + 1 of the extreme points of this subset. We establish related results for closed max-plus convex cones and closed unbounded max-plus convex sets. In particular, we show that a closed max-plus convex set can be decomposed as a max-plus sum of its recession cone and of the max-plus convex hull of its extreme points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max-Plus Convex Geometry

Max-plus analogues of linear spaces, convex sets, and polyhedra have appeared in several works. We survey their main geometrical properties, including max-plus versions of the separation theorem, existence of linear and non-linear projectors, max-plus analogues of the Minkowski-Weyl theorem, and the characterization of the analogues of “simplicial” cones in terms of distributive lattices.

متن کامل

Max-plus Convex Sets and Functions

We consider convex sets and functions over idempotent semifields, like the max-plus semifield. We show that if K is a conditionally complete idempotent semifield, with completion K̄, a convex function Kn → K̄ which is lower semi-continuous in the order topology is the upper hull of supporting functions defined as residuated differences of affine functions. This result is proved using a separation...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Hahn-Banach Separation Theorem for Max-Plus Semimodules

We introduce max-plus analogues of basic Euclidian geometry notions: scalar product is replaced by a scalar division, and the associated distance is essentially Hilbert’s projective distance. We introduce an orthogonal projection and prove a Hahn-Banach type theorem: a point can be separated from a semimodule by a hyperplane orthogonal to the direction of projection. We use these results to sep...

متن کامل

A Refined Brunn-minkowski Inequality for Convex Sets

Starting from a mass transportation proof of the Brunn-Minkowski inequality on convex sets, we improve the inequality showing a sharp estimate about the stability property of optimal sets. This is based on a Poincaré-type trace inequality on convex sets that is also proved in sharp form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006